Aktuelles

Der folgende Artikel wurde in der Hearing Research veröffentlicht. Unser Mitarbeiter Christian Kisker ist Co-Autor, da Teile seines Programmcodes seiner damaligen Bachelorarbeit verwendet wurden.

Der folgende Inhalt ist nur in Englisch verfügbar.

Choice of Test Stimulus matters for Pitch Matching Performance: Comparison between Pure Tone and Narrow Band Noise

Abstract:

Chronic tinnitus, a symptom of high prevalence, is a persistent hearing sensation in the absence of an external sound source. Recent electrophysiological studies indicate that tinnitus generation is to a high degree the result of maladaptive plasticity in the central auditory pathway. The pitch of the tinnitus sensation can be assessed by performing a pitch matching procedure. In the most frequent “tonal tinnitus” type pure tones are used as test stimuli. However, in the case of tonal tinnitus not a single malfunctioning neuron, but rather a population of neighbouring neurons is involved in the generation process of tinnitus and patients typically perceive their tinnitus as a sound having a prominent centre frequency with some spectral extent. Thus, the question arises, why not to use narrow band noise (NBN) instead of pure tones as test stimuli in pitch matching procedures? To investigate this, we first evaluated the pitch matching performance of healthy subjects. In a recursive two alternative choice testing, driven by a computer based automated procedure, the subjects were asked to match the pitch of two sounds. In a crosswise design, NBNs and pure tones were used both as target and as test stimuli. We were able to show that across all four possible combinations the pitch matching performance was least favourable when a sinusoidal sound had to be matched to an NBN target. Even though matching two sinusoidal sounds results in the lowest error, considering that the tinnitus percept typically includes some spectral extent, an NBN should be preferably used as a test stimulus against a pure tone.

Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden.
Weitere Informationen Ok